Omnisense

Innovative approaches to achieve 9 dimensional positioning

Presented at BIT's $1^{\text {st }}$ International Congress of u-World David Bartlett Omnisense Ltd

24 October 2011, Dalian, China

Internet of Things

Omnisense

In a world of machine-machine communications:

- Sensor-rich environment
- Location \& position is important
- We potentially know everything about everything!
- This may be good or bad - public debate hosted by CW in London in November www.cambridgewireless.org.uk Today l'm going say a little bit about location and positioning in this world of the future.

Short introduction

Omnisense

I am CTO and co-founder of Omnisense

- We have developed a unique WSN solution for positioning sensors in a network using a combination of radio signals exchanged between peers and motion sensors in the devices. The system operates without the need for pre-installed fixed infrastructure of readers or access points.
- We are a young company based in Cambridge UK but our products have global applicability and reach.
- I am also Location Special Interest group co-champion at Cambridge wireless, a networking organisation for the wireless industry with links to like-minded groups around the world.
- I have worked in the field of location and positioning for more than 25 years including: AVI, RFID, GPS, TDOA, SLAM - using radio signals, acoustics, optical and motion sensors.

Evolution of RTLS

 $1^{\text {st }}$ generation (RFID)- Pinch point proximity $2^{\text {nd }}$ generation
- Zonal bounded 3rd generation (GPS)
- X,Y,Z, local or global $4^{\text {th }}$ generation
- X,Y,Z and
- Orientation
- Behaviour aware
- The future...

9-dimensional positioning?

Omnisense

Position (location) is far more than an (x, y, z) point in space.

- To dully describe position at least 9 parameters are needed:
$O(x, y, z)$ - the position at a point in time
o $\left(v_{x}, v_{y}, v_{z}\right)$ - velocity
- (Φ, θ, Ψ) - orientation
- Actually additional secondary parameters may also be useful:
- Acceleration
- Rate of rotation
- Behaviour descriptions

In many respects the very last point, behaviour, is the most important although it is application specific.

Behaviour - healthcare example

Omnisense

- Elderly care for people with dementia
- Actions and proximity of carer matters
- Behaviour of person with dementia
- (x,y,z), which room at which time
- Mobility relates to activity level, step count
- Orientation: stand, sit, fall
 etc.

Calculating ($\mathbf{x}, \mathrm{y}, \mathrm{z}$)

Omnisense

Several methods

- RFID gives proximity to reader
- Infrared, acoustic give room based positions
- GPS: receiver knows latitude and longitude
- Omnisense system uses a novel peer-peer communications between sensors to position them relative to one another

Relative positions often more important than absolute

Calculating velocity

Omnisense

Velocity is more difficult

- Dopplers from radio signals
- Inertial navigation using accelerometers and rate gyroscopes
- Dead reckoning using step counts, odometer, wheel counters
- Differencing (x, y, z) positions not recommended.

True velocity using the first two methods lead to more precise problem solution

Calculating orientation

Orientation is easier

- Angle of arrival of radio signals using antenna array
- Magnetometer to measure
 compass bearing
- Using inertial navigation system of accelerometers and rate gyroscopes.
Inertial navigation systems need to be calibrated because they drift with time, low cost sensors are particularly problematic.

Inertial navigation

Omnisense

Strap-down inertial navigation using low cost MEMs sensors may be possible

- Acceleration and rotation rate must be integrated to give velocity and orientation.
- Initial conditions and sensor errors need to be computed

- Measurements are in inertial space which is not same as navigation coordinates

$$
\begin{aligned}
& v=\int a . d t+v_{0} \\
& d=\int v \cdot d t+d_{0}
\end{aligned}
$$

But difficult

Conclusions

By using the right combinations of sensors full 9-dimensional positioning can be achieved.

- Low cost low performance systems can be built using simple radio location combined with accelerometer and magnetometer
- Higher performance systems can be built using the combination of radio location and inertial navigation sensors
- Relative positions are often more important than absolute positions
- Derived behaviours are often most valuable, but they usually need 9 -dimensional+ position parameters to characterize!

Thank You

Omnisense

Omnisense Limited
$3^{\text {rd }}$ Floor St Andrew's House
59 St Andrew's Street
Cambridge
CB2 3BZ
UK
T. +44 (0) 1223651390
E. info@omnisense.co.uk
W. http://www.omnisense.co.uk

